Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors.

نویسندگان

  • Valéry Olivier Zilio
  • Om Parkash Joneja
  • Youri Popowski
  • Anatoly Rosenfeld
  • Rakesh Chawla
چکیده

Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an 192Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of iridium-192 source by ionization chamber for high dose rate brachytherapy

Background: The effectiveness and safety of brachytherapy treatment is mainly concerned with the calibration of sources and their traceability to internationally accepted Standards. Secondary Standard Dosimetry Laboratory (SSDL) does not offer calibration of ionization chambers with gamma-ray spectrum of high dose rate source 192Ir . This work has been carried out to calibrate the high dose rat...

متن کامل

A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brac...

متن کامل

Evaluation of dose distribution and dose gradient in brachytherapy cylindrical applicators using a dedicated Phantom for Iridium-192 and Cobalt-60 HDR sources

Introduction: A study was performed to evaluate radiation dose distribution and dose gradient around cylindrical applicators for high-dose-rate (HDR) brachytherapy systems with 192Ir, 60Co brachytherapy source applied for rectal and vaginal cancers treatments.   Materials and Methods: Two additional computed tomography (CT) based plans were generated using a ...

متن کامل

Dosimetric characterization of round HDR 192Ir accuboost applicators for breast brachytherapy.

PURPOSE The AccuBoost brachytherapy system applies HDR 192Ir beams peripherally to the breast using collimating applicators. The purpose of this study was to benchmark Monte Carlo simulations of the HDR 192Ir source, to dosimetrically characterize the round applicators using established Monte Carlo simulation and radiation measurement techniques and to gather data for clinical use. METHODS Do...

متن کامل

Gafchromic film dosimetry of a new HDR  192Ir brachytherapy source

High-dose-rate (HDR) brachytherapy is a popular modality for treating cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck as well as soft-tissue sarcomas. Because of different source designs and licensing issues, there is a need for specific dosimetry dataset for each HDR source model. The main objective of the present work is to measure 2D relativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 33 6  شماره 

صفحات  -

تاریخ انتشار 2006